Abstract
Changing the material parameters such as powder characteristics and additives affects the final properties of an iron–carbon alloy. This study investigated the influences of three typical material parameters, iron particle size, graphite addition, and powder lubricant addition, on the density and mechanical properties of an iron–carbon alloy formed via powder compaction and sintering. Each material parameter was designed with five levels, and all of the powder mixtures were compacted under 500 MPa and sintered at 1120 °C for 30 min. The microstructure of the samples was observed for the green part and sintered part. Through the tensile test, yield strength, ultimate tensile strength, and elongation were measured. The tensile fracture surface was also examined to understand the changes in mechanical properties according to the parameters. The correlations between mechanical properties and material parameters were characterized by the mapping functions, and a sensitivity analysis was carried out to investigate which parameter had the larger influence on the mechanical properties. The results showed that graphite addition has the greatest influence on the mechanical properties due to the microstructural changes from hypoeutectoid structure to hypereutectoid structure. Further, a regression model was developed to describe the mechanical response of the iron–carbon alloy depending on the material conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.