Abstract

Recent developments in next generation disc technology, cameras in mobile phones, zoom-lenses for small digital cameras and camcorders, digital SLRs, and television cameras have amplified the demand for affordable optical systems with outstanding image quality, a combination that can only be achieved using aspheric surfaces. The metrology of aspheric surfaces is a classical problem, but solutions so far have not fulfilled all demands for system cost, TACT (Total Average Cycle Time), minimized tooling, measurement uncertainty, spatial resolution, robustness in a production environment and many more. Zygo Corp. presents here a new method [1,2] for measurement of rotationally symmetrical aspheric surfaces using a new commercial system, which has the potential to fulfill these industry requirements. During measurement, the surface is scanned along its symmetry axis in a Fizeau cavity with a spherical reference surface. The coordinates x,y,z at the (moving) zone of normal incidence are derived from simultaneous phase-measurements at the apex and zone. Phase-shifting Fizeau interferometry and displacement interferometry are combined in the new commercial system to realize this new method. Aspheric departure from a best-fitsphere approaching 800 microns can be measured, and absolute measurement is possible with an absolutely calibrated transmission sphere. A custom parabolic artifact is measured with conventional null Fizeau interferometry and by the new commercial system. Data is reported for each technique along with a difference map achieved by fiducialized data subtract where 32.0 nm peak-to-valley (PV) and 3.6 nm R.M.S. are achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call