Abstract
Large-scale multiconfiguration Dirac-Fock calculations have been performed for the superheavy element eka-thorium, $Z=122$. The resulting atomic structure is compared with that obtained by various computational approaches involving different degrees of approximation in order to elucidate the role that correlation, relativistic, Breit, and quantum electrodynamics corrections play in determining the low-energy atomic spectrum. The accuracy of the calculations is assessed by comparing theoretical results obtained for thorium with available experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.