Abstract

A recent study shows that the existing first-order canonical timing is not sufficient to represent the dependency of the gate/wire delay on the processing and operational variations when these variations become more and more significant. Due to nonlinear mapping from variation sources to the gate/wire delay, the distribution of the delay will no longer be Gaussian even if variation sources are normally distributed. A novel timing model is proposed to capture the nonlinearity of the dependency of gate/wire delays and arrival times on the variation sources. Systematic methodology is also developed to evaluate the correlation and distribution of the quadratic timing model. Based on these, a statistical static timing analysis algorithm that retains the complete correlation information during timing analysis and has linear computation complexity with respect to both the circuit size and the number of variation sources is proposed. Tested on the ISCAS circuits, the proposed algorithm shows significant accuracy improvement over the existing first-order algorithm with a small amount of computational cost

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.