Abstract
To constrain the giant pulse (GP) emission mechanism and test the model of Lyutikov (2007) for GP emission, we have carried out a campaign of simultaneous observations of the Crab pulsar at gamma-ray (Fermi) and radio (Green Bank Telescope) wavelengths. Over 10 hours of simultaneous observations we obtained a sample of 2.1x10^4 giant pulses, observed at a radio frequency of 9 GHz, and 77 Fermi photons, with energies between 100 MeV and 5 GeV. The majority of GPs came from the interpulse (IP) phase window. We found no change in the GP generation rate within 10-120 s windows at lags of up to +-40 min of observed gamma-ray photons. The 95% upper limit for a gamma-ray flux enhancement in pulsed emission phase window around all GPs is 4 times the average pulsed gamma-ray flux from the Crab. For the subset of IP GPs, the enhancement upper limit, within the IP emission window, is 12 times the average pulsed gamma-ray flux. These results suggest that GPs, at least high-frequency IP GPs, are due to changes in coherence of radio emission rather than an overall increase in the magnetospheric particle density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.