Abstract

This is a study of the influence of centrifugal process on the graphite morphology, mechanical and wear properties on flake graphite iron (FGI), spheroidal graphite iron (SGI) and compacted graphite iron (CGI). Melts of hypereutectic and almost of identical composition with or without melt treatment were centrifugally cast. The microstructure, mechanical and wear properties of these specimens were studied. In the microstructure for FG iron it has been observed that the centrifugal process produces flake size range class 2–3 (range 160–320 μm) and graphite of flake type A by about 67.9 % (field %) and combined flakes of type B, C, D and E will be of 32.1 % (field %). While SGI has been observed to have 96.1 % nodules and 330.0 nodules per square millimeter. Similarly CGI has been seen to produce 52.0 % nodules and 113 nodules per square millimeter. SGI possess the highest tensile strength, rupture strain and hardness of 604 N/mm2, 6.1 %, 233 BHN respectively. Whereas FGI possess the least tensile strength, rupture strain and hardness of 303 N/mm2, 0.65 %, 185 BHN respectively among the irons. CGI has a tensile strength, rupture strain and hardness of 369 N/mm2, 1.2 % and 200 BHN respectively which lies in between those of FGI and SGI. During the wear test similar materials for both disk and pin combination show higher co-efficient of friction and wear rate than those for dissimilar material combinations. SGI disk and FGI pin combination show least wear. This combination would be ideally suited for engine liner and piston rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.