Abstract
Thermally stimulated current (TSC) was used to study molecular relaxations in polyethylene terephthalate (PET) bottles. Unstretched PET film, which was used as a model for the bottle preform, exhibited two peaks at 77 and 90°C that correspond to the α and ρ relaxation processes, respectively. The bottles exhibited only the ρ relaxation, which is located within the temperature range for blow molding PET bottles. The α peak is associated with the main glass transition temperature (Tg) and the ρ peak may be associated with a second Tg. The second Tg is attributed to a “constrained state,” which shows dipolar behavior. Heat-shrinkage behavior was examined at 90°C. The maximum TSC (Im) of the ρ peak decreased with increasing heat set temperature, and with decreasing shrinkage. Bottles blown at 113°C showed a lower Im and shrinkage than those blown at 103°C for equivalent heat set temperatures. The higher blowing temperature allowed a higher stretch speed that produced higher crystallinity bottles with self-heat generation during rapid deformation. A relationship between the shrinkage mechanism and the dipole relaxation was proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.