Abstract

BackgroundCoronary artery disease (CAD) remains one of the leading causes of mortality and morbidity worldwide. As oxygen and nutrient supply to the myocardium significantly decrease during ischemic periods, important changes occur regarding myocardial intermediary energy metabolism. Metabolomics is an emerging field in systems biology, which quantifies metabolic changes in response to disease progression. This study aims to evaluate the diagnostic utility of plasma metabolomics-based biomarkers for determining the complexity and severity of CAD, as it is assessed via the SYNTAX score.MethodsCorlipid is a prospective, non-interventional cohort trial empowered to enroll 1065 patients with no previous coronary intervention history, who undergo coronary angiography in University Hospital AHEPA, Thessaloniki. Venous blood samples are collected before coronary angiography. State-of the-art analytical methods are performed to calculate the serum levels of novel biomarkers: ceramides, acyl-carnitines, fatty acids, and proteins such as galectin-3, adiponectin, and the ratio of apolipoprotein B/apolipoprotein A1. Furthermore, all patients will be categorized based on the indication for coronary angiography (acute coronary syndrome, chronic coronary syndrome, preoperative coronary angiography) and on the severity of CAD using the SYNTAX score. Follow-up of 12 months after enrollment will be performed to record the occurrence of major adverse cardiovascular events. A risk prediction algorithm will be developed by combining clinical characteristics with established and novel biomarkers to identify patients at high risk for complex CAD based on their metabolite signatures. The first patient was enrolled in July 2019 and completion of enrollment is expected until May 2021.DiscussionCorLipid is an ongoing trial aiming to investigate the correlation between metabolic profile and complexity of coronary artery disease in a cohort of patients undergoing coronary angiography with the potential to suggest a decision-making tool with high discriminative power for patients with CAD. To our knowledge, Corlipid is the first study aspiring to create an integrative metabolomic biomarkers-based algorithm by combining metabolites from multiple classes, involved in a wide range of pathways with well-established biochemical markers.Trial registration CorLipid trial registration: ClinicalTrials.gov number: NCT04580173. Registered 8 October 2020—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04580173.

Highlights

  • Coronary artery disease (CAD) remains one of the leading causes of mortality and morbidity worldwide

  • Atherosclerosis is a pathological process strongly correlated with metabolic disorders of lipid oxidation stress [1]

  • Its consequent inflammatory alterations on the endothelium could lead to coronary artery disease (CAD), including stable and acute coronary syndrome

Read more

Summary

Introduction

Coronary artery disease (CAD) remains one of the leading causes of mortality and morbidity worldwide. Metabolomics is an emerging field in systems biology, which quantifies metabolic changes in response to disease progression. Despite the remarkable progress in diagnosing and treating CAD during the last decade, it remains the leading cause of morbidity and mortality worldwide [4], while prognostic prediction remains challenging in this cohort of patients. This could be attributed to a lack of effective diagnostic methods for CAD in its early stages, and a poor understanding of its pathophysiology. Further studies are still warranted to increase our understanding of the complex pathophysiological mechanisms underlying CAD and to shed light on novel CAD risk parameters

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.