Abstract
Sediment erosion is the main problem for the hydropower situated in South Asia and South America. Due to sediment erosion, hydropower in those areas cannot operate in their full potential. Sediment erosion is a significant problem in turbomachinery and associated with degradation of turbine performance. The sediment erosion removes the turbine material from its surface. It can cause fracture of the turbine, which leads to an economic loss. In this paper, the sediment properties and its influence on erosion have discussed. Sediment properties like shape, size, and concentration have a direct influence on erosion. The numerical analysis was conducted to visualize the erosion in Francis hydro turbine. The most vulnerable area for the sediment erosion in Francis hydro turbine has predicted. The precise prediction of the sediment erosion in the turbine is the difficult task due to the synergetic effect of sediment parameters (shape, size, concentration, hardness, velocity). The accurate and precise indication of the sediment erosion required both experimental and computational analysis. In this study, solid-fluid computational analysis has done to identify the susceptible area on runner blade and influence of sediment parameters on erosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Fluid Machinery and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.