Abstract
A correlation ratio between a glass transition temperature Tg and average bond energy E (obtained for chalcogenide glasses in L. Tichý & H. Tichá [J. Non-Cryst. Solids, 189, 1995]) was critically analyzed in this paper. As a result, this ratio was shown to have been obtained using incorrect calculations of the average bond energy E through inappropriate application of different averaging procedures for different terms of this parameter and, therefore, it cannot be used in practice. A mathematical algorithm for calculating the average energy bonding was adjusted by the atom-averaging procedure for the both energy of the “network part of a matrix” Ec (energy of heteropolar bonds) and energy of a "residual matrix" Erm (energy of homopolar bonds), as well as considering the impossibility of forming covalent chemical bonds between cations of different type. It was stated that the linear ratio between the glass transition temperature Tg and energy bonding E can be obtained by the ratio Tg ≅ 326∙(E – 0.94) and this claim was proved for 145 typical representatives of the covalent-bonded network chalcogenide glasses (Ge-As-S/Se-type systems).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.