Abstract

Current methods for reengineering enzyme substrate specificities rely heavily on the use of static x-ray crystallographic models. In this article we detail the use of a molecular mechanics approach for suggesting regions of Bacillus stearothermophilus L-lactate dehydrogenase (EC 1.1.1.27) involved in substrate specificity, and hence areas of interest for protein engineers. The approach combines molecular dynamics with energy minimization (MD/EM) to search the conformational space available to a 15-A sphere of the ternary complex centered on the catalytic histidine. The search is carried out by calculating a 30-ps dynamics trajectory at 300 K and minimizing structures at 1-ps intervals. The protocol has been performed on 14 systems containing different combinations of substrate and mutant/wt LDH. In order to discover which interactions are important in defining substrate specificity, eight conformational parameters representing substrate-active site interactions were measured in each of the 420 minimized structures. These parameters were then compared to the measured catalytic activity of the protein-substrate combinations. These comparisons show that arginine 109 orientation is a major determining factor in LDH specificity. Using this methodology it is possible to estimate the catalytic activity of proteins of varied sequence by computer simulation before synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.