Abstract

Currently, the modelling of drying processes of plant tissues pre-treated by pulsed electric field (PEF) is following experimentally identified curves or separate heat and mass transfer and diffusion models with different levels of accuracy. This research had two major objectives: mathematical modeling and control of drying process of different vegetables pretreated by PEF during convective drying. The mathematical modeling was based on Luikov's heat and mass transfer model along with properties of different vegetables. Computer modelling was done using the difference method for predicting moisture and the temperature potentials of untreated and PEF-treated vegetables. The formulation and the solution procedures were applied to simulate the simultaneous heat and mass transfer in selected vegetables subjected to the convective drying. Suggested model had a good correlation with experimental results. Moreover, cell disintegration index can be used as a controllable parameter in heat and mass transfer models to predict drying behavior of potato, onion, and carrot tissues. Obtained drying models can be used as a mathematical tool to predict drying behavior for various types of agricultural products pre-treated by pulsed electric field. • Pulsed electric field (PEF) pre-treatment reduced the drying time. • Obtained methodology is a good tool for the analysis and modelling of PEF assisted drying. • Cell disintegration index is in relationship with the kinetics coefficients of Luikov's model. • Cell disintegration index can be used to predict drying behavior of plant tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.