Abstract

BackgroundDiffusion-weighted magnetic resonance imaging (DW-MRI) provides information on the cellularity and movement of water molecules in tissues and 18F–fluorodeoxyglucose (18F–FDG) positron emission tomography/computed tomography (18F–FDG PET/CT) assesses cellular glucose metabolism, however both variables are related to tumour aggressiveness. The aim of this study is to investigate the potential correlation of the apparent diffusion coefficient (ADC) assessed by diffusion-weighted MRI (DWI) and glucose metabolism determined by the standardized uptake value (SUV) calculated from 18F–FDG PET/CT data in non-small cell lung cancer (NSCLC) with the occurrence of metastasis to the lymph nodes.Methods18F–FDG PET/CT and DWI (TR/TE, 1800/93 ms; b-values, 0 and 600 s/mm2) were performed in 37 consecutive patients with histologically verified NSCLC. SUVmax was calculated based on the PET-CT data. The minimum ADC (ADCmin) was determined by placing a region-of-interest (ROI) covering the entire tumou. Results of 18F–FDG PET/CT and DWI were compared on a per-patient basis. Pearson’s correlation coefficient was used for statistical analysis.ResultsCorrelation analysis of the ADCmin and SUVmax revealed that the inverse correlation was good for all the masses (p < 0.001) and the lymph nodes (p < 0.001) for each histological subtype, for both adenocarcinomas (p < 0.001) lymph nodes (p = 0.005) and squamous cell carcinomas (p < 0.001). No significant correlation was found in the comparison of the ADCmin and SUVmax of the lymph nodes for squamous cell carcinomas (p = 0.066).ConclusionsThis study verified the relationship between the SUVmax and the ADCmin in NSCLC. The significant inverse correlation of these two quantitative imaging approaches highlights the association between metabolic activity and tumour cellularity. Therefore, DWI with ADC measurement might represent a new biomarker in NSCLC.

Highlights

  • Diffusion-weighted magnetic resonance imaging (DW-MRI) provides information on the cellularity and movement of water molecules in tissues and 18F–fluorodeoxyglucose (18F–FDG) positron emission tomography/ computed tomography (18F–FDG positron emission tomography/computed tomography (PET/CT)) assesses cellular glucose metabolism, both variables are related to tumour aggressiveness

  • No significant differences between the different histological types were found in the values of Minimum ADC (ADCmin) or Maximum SUV (SUVmax) in the primary tumour (p = 0.484 for ADCmin; p = 0.165 for max standardized uptake value (SUV))

  • The present study demonstrated the existence of a significant inverse correlation between ADCmin and SUVmax in primary lung tumours, regardless of histological subtype

Read more

Summary

Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) provides information on the cellularity and movement of water molecules in tissues and 18F–fluorodeoxyglucose (18F–FDG) positron emission tomography/ computed tomography (18F–FDG PET/CT) assesses cellular glucose metabolism, both variables are related to tumour aggressiveness. The aim of this study is to investigate the potential correlation of the apparent diffusion coefficient (ADC) assessed by diffusion-weighted MRI (DWI) and glucose metabolism determined by the standardized uptake value (SUV) calculated from 18F–FDG PET/CT data in non-small cell lung cancer (NSCLC) with the occurrence of metastasis to the lymph nodes. Metastatic events have an important effect on disease progression and mortality Diagnostic imaging methods such as computed tomography (CT), positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI) and bone scintigraphy are routinely performed for detection and staging of primary lung cancer. 18F–fluorodeoxyglucose (18F–FDG) whole body PET/CT examination has been established as the multiparametric imaging method of choice in patients with lung cancer because it allows the investigator to obtain information on tumour morphology, extent and glucose metabolism by calculating the standard uptake value (SUV) [2, 3].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call