Abstract
The subthreshold mechanisms that underlie neuronal correlations in awake animals are poorly understood. Here, we perform dual whole-cell recordings in the visual cortex (V1) of awake mice to investigate membrane potential (Vm) correlations between upper-layer sensory neurons. We find that the membrane potentials of neighboring neurons display large, correlated fluctuations during quiet wakefulness, including pairs of cells with disparate tuning properties. These fluctuations are driven by correlated barrages of excitation followed closely by inhibition (∼5-ms lag). During visual stimulation, low-frequency activity is diminished, and coherent high-frequency oscillations appear, even for non-preferred stimuli. These oscillations are generated by alternating excitatory and inhibitory inputs at a similar lag. The temporal sequence of depolarization for pairs of neurons is conserved during both spontaneous- and visually-evoked activity, suggesting a stereotyped flow of activation that may function to produce temporally precise "windows of opportunity" for additional synaptic inputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.