Abstract

A series of catecholatoiron(III) complexes, [Fe(III)L(4Cl-cat)]BPh4 (L = (4-MeO)2TPA (1), TPA (2), (4-Cl)2TPA (3), (4-NO2)TPA (4), (4-NO2)2TPA (5); TPA = tris(pyridin-2-ylmethyl)amine; 4Cl-cat = 4-chlorocatecholate), have been characterized by magnetic susceptibility measurements and EPR, 1H NMR, and UV-vis-NIR spectroscopies to clarify the correlation of the spin delocalization on the catecholate ligand with the O2 reactivity as well as the spin-state dependence of the O2 reactivity. EPR spectra in frozen CH3CN at 123 K clearly showed that introduction of electron-withdrawing groups effectively shifts the spin equilibrium from a high-spin to a low-spin state. The effective magnetic moments determined by the Evans method in a CH3CN solution showed that 5 contains 36% of low-spin species at 243 K, while 1-4 are predominantly in a high-spin state. Evaluation of spin delocalization on the 4Cl-cat ligand by paramagnetic 1H NMR shifts revealed that the semiquinonatoiron(II) character is more significant in the low-spin species than in the high-spin species. The logarithm of the reaction rate constant is linearly correlated with the energy gap between the catecholatoiron(III) and semiquinonatoiron(II) states for the high-spin complexes 1-3, although complexes 4 and 5 deviate negatively from linearity. The lower reactivity of the low-spin complex, despite its higher spin density on the catecholate ligand compared with the high-spin analogues, suggests the involvement of the iron(III) center, rather than the catecholate ligand, in the reaction with O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call