Abstract
Abstract Artificial neural networks have been used for the correlation and prediction of solubility data of ammonia in ionic liquids. This solubility of ammonia is highly variable for different types of ionic liquids at the same temperature and pressure, its correlation and prediction is of special importance in the removal of ammonia from flue gases for which effective and efficient solvents are required. Nine binary ammonia + ionic liquids mixtures were considered in the study. Solubility data (P–T–x) of these systems were taken from the literature (208 data points for training and 50 data points for testing). The training variables are the temperature and the pressure of the binary systems (T, P), being the target variable the solubility of ammonia in the ionic liquid (x). The study shows that the neural network model is a good alternative method for the estimation of solubility for this type of mixtures. Absolute average deviations were below 5.6%, for each isothermal data set and overall absolute average deviations were below 3.0%. Only in the range of low solubility (below 0.2 in mole fraction) did predicted solubility give deviations higher than 10%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.