Abstract

This work investigates the correlations existing among soil organic carbon (C), nitrogen (N), phosphorous (P), potassium (K), and physicochemical properties like clay mineralogy, textural components, soil aggregation, and land use pattern. Seven different locations were chosen in the tropical rainforest climate region of Assam, India, for the work. The soil texture classifications were clay, sandy clay loam, and sandy loam with mixed clay mineralogy consisting of tectosilicates and phylosilicates. Two distinct compositions of total Fe/Al oxides≥11.5 and <10.8% were observed along with two distinct groups of water stable soil aggregates of mean weight diameter≈6.42 and ≤3.26 mm. The soil clay and sand had positive and negative contributions respectively to the soil organic carbon (SOC) protection, which was observed to be dependent on lesser sand content, higher silt+clay content, and the presence of higher percentages of total Fe/Al oxides. Soil clay mineralogy suggested that the mineral, chlorite, favored retention of higher SOC content in a particular site. Under similar climatic and mineralogical conditions, both natural and anthropogenic soil disturbances destabilized SOC protection through SOM mineralization and soil aggregate destabilization as indicated by SOC protective capacity studies. Urbanization resulting in soil compaction contributed to enhanced SOC level through increased contact between the occluded organic carbon and the soil mineralogical constituents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call