Abstract

This paper presents and discusses detailed field and laboratory studies concerning boreability prediction of tunnel boring machines (TBMs) used in Kozyatagi-Kadikoy metro tunnels in Istanbul in a highly fractured rock formation. The determination of some design parameters and performance prediction of a tunnel boring machine (TBM) are carried out using full-scale rock cutting test. The intact rock samples having minimum sizes of 1.0 × 0.7 × 0.7 m are obtained from shale and limestone (Kartal Formation) along the tunnel line. The rock samples are subjected to full-scale laboratory rock cutting tests with different depth of cut and cutter spacing values using a constant cross section (CCS) disc cutter of 330 mm in diameter. Cutter forces, i.e., thrust force, rolling force and specific energy values are recorded for each cut. The results of the tests are first used to calculate TBM design and performance parameters such as torque and thrust requirements and cutting rates. In the second part of the research, the field performance of the TBM is recorded with the aid of data acquisition system installed within TBM and the predicted performance and design values obtained from full-scale rock cutting tests are compared with the field values. It is observed that fractured characteristics of the rock formation affect tremendously TBM performance and predicted values differ from the field data in some extend. It is believed that the results will serve as a guide for efficient selection and use of TBMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call