Abstract

Squamous epithelium lines the nasal vestibule of the rat, rhesus monkey, and human. Respiratory, transitional, and olfactory epithelia line most areas posterior to the nasal vestibule. Inhaled formaldehyde gas induces squamous metaplasia posterior to the nasal vestibule and does not induce lesions in the nasal vestibule in rats and rhesus monkeys, indicating that squamous epithelium is resistant to irritant effects of formaldehyde and that squamous metaplasia may be an adaptive response. If squamous metaplasia is determined by formaldehyde dosimetry rather than by tissue-specific factors, squamous epithelium may be protective by absorbing less formaldehyde than other epithelial types. In a previous study, a three-dimensional, anatomically accurate computational fluid dynamics (CFD) model of the anterior F344 rat nasal passages was used to simulate inspiratory airflow and inhaled formaldehyde transport. The present study consisted of two related parts. First, the rat CFD model was used to test the hypothesis that the distribution of formaldehyde-induced squamous metaplasia is related to the location of high-flux regions posterior to squamous epithelium. Regional formaldehyde flux into nonsquamous epithelium predicted by the CFD model correlated with regional incidence of formaldehyde-induced squamous metaplasia on the airway perimeter of one cross-sectional level of the noses of F344 rats exposed to 10 and 15 ppm formaldehyde gas for 6 months. Formaldehyde flux into nonsquamous epithelium was estimated to vary by an order of magnitude depending on the degree of formaldehyde absorption by squamous epithelium. These results indicate that the degree to which squamous epithelium absorbs formaldehyde strongly affects the rate and extent of the progression of squamous metaplasia with continued exposure to formaldehyde. In the second part of this study, the CFD model was used to predict squamous metaplasia progression. Data needs for verification of this model prediction are considered. These results indicate that information on the permeability of squamous epithelium in rats, monkeys, and humans is important for accurate prediction of uptake in regions posterior to the nasal vestibule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.