Abstract

This article will review how blended cements are effective in controlling the alkali-silica reaction (ASR) expansion by changing the chemical reactions, as well as improving the transport properties of concrete. Several models have been proposed to describe the mechanism by which ASR can damage cement-based materials. Nonetheless, the effect of blended cements on the morphology and chemical composition of reaction products needs better understanding. In this study, experimental data from the ASTM C1567 test method and microstructural studies, including an environmental scanning electron microscope (ESEM) and quantitative energy dispersive spectrometer (EDS), were used to develop a physico-chemical model based on the properties of different silicate glass structures. One type of reactive aggregate and several fly ashes with various properties were used. An analysis of the number of bridging and nonbridging oxygens in the gel network in acidic and basic environments provided further insight into ASR products. The distinction between “safe” and “unsafe” reaction products was discussed with the formation of smooth gels with Na-Si-O phase versus the dispersed platelets with Ca-Na-Si-O composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.