Abstract

Proton-conducting polymers play a pivotal role in clean energy technologies and various industrial applications, with a significant emphasis on enhancing energy efficiency and minimizing environmental impact. Sulfonated polyether ether ketone (SPEEK), which is renowned for its proton conductivity, has emerged as a key material in electrochemical processes, notably in proton exchange membrane (PEM) fuel cells. This study investigated the proton conductivity and dielectric behavior of SPEEK electrolytes at varying degree of sulfonation (DS) of 65% and 80%, correlating these properties with free volume profiles determined by positron annihilation lifetime spectroscopy (PALS). The SPEEK-65 and SPEEK-80 electrolytes were prepared via a controlled sulfonation process and characterized by FTIR, TGA, and SEM analyses. Proton conductivity and dielectric measurements were conducted at temperatures ranging from 300-370 K and frequencies ranging from 20 Hz to 1 MHz. The results revealed that SPEEK-80 exhibited a maximum proton conductivity of 3.4×10-2 S/m at 300 K and 1 MHz, which was significantly greater than the 4.38×10-3 S/m observed for SPEEK-65 under the same conditions. PALS analysis demonstrated a notable increase in free volume with increasing DS, with SPEEK-80 showing a higher o-Ps lifetime and intensity, indicating larger free volume sizes and fractions. These findings underscore the critical interplay between DS, free volume, and proton conductivity, offering insights into optimizing SPEEK-based electrolytes for advanced electrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.