Abstract
A recently generated transgenic mouse line having activated polyamine catabolism due to systemic overexpression of spermidine/spermine N1-acetyltransferase (SSAT) was used to isolate primary fetal fibroblasts as a means to further elucidate the cellular consequences of activated polyamine catabolism. Basal levels of SSAT activity and steady-state mRNA in the transgenic fibroblasts were about approximately 20- and approximately 40-fold higher than in non-transgenic fibroblasts. Consistent with activated polyamine catabolism, there was an overaccumulation of putrescine and N1-acetylspermidine and a decrease in spermidine and spermine pools. Treatment with the polyamine analogue N1,N11-diethylnorspermine (DENSPM) increased SSAT activity in the transgenic fibroblasts approximately 380-fold, whereas mRNA increased only approximately 3-fold, indicating post-mRNA regulation. SSAT activity in the nontransgenic fibroblasts increased approximately 200-fold. By Western blot, enzyme protein was found to increase approximately 46 times higher in the treated transgenic fibroblasts than non-transgenic fibroblasts: a value comparable to 36-fold differential in enzyme activity. With DENSPM treatment, spermidine pools were more rapidly depleted in the transgenic fibroblasts than in nontransgenic fibroblasts. Similarly, transgenic fibroblasts were much more sensitive to DENSPM-induced growth inhibition. This was not diminished by co-treatment with an inhibitor of polyamine oxidase, suggesting that growth inhibition was due to polyamine depletion per se as opposed to oxidative stress. Since the two fibroblasts were genetically identical except for the transgene, the various metabolic and growth response differences are directly attributable to overexpression of SSAT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.