Abstract
The mechanisms of plastic deformation and dynamic recrystallization (DRX) in a Mg–5.8% Zn–0.65% Zr alloy were studied by compression tests at temperatures between 423 and 723 K and at strain rates ranging from 10 −5 to 10 −1 s −1. It was shown that the mechanisms of DRX depended on the operating deformation mechanisms which changed with temperature. Low-temperature DRX (LTDRX below 473 K) was associated with the operation of twinning, basal slip and ( a+ c) dislocation glide. In the intermediate temperature range (473–523 K) continuous DRX (CDRX) was observed and associated with extensive cross-slip due to the Friedel–Escaig mechanism. At temperatures ranging from 573 to 723 K both bulging of original grain boundaries and subgrain growth were the operating DRX mechanisms and controlled by dislocation climb.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.