Abstract

IntroductionAdult zebrafish pharmacology is evolving rapidly for creating efficacy and safety models for drug discovery. However, there is very limited research in understanding pharmacokinetics (PK) in adult zebrafish. Methods for understanding PK will help in conducting pharmacokinetic – pharmacodynamic (PK-PD) correlations and improving the quality and applicability of data obtained using zebrafish. MethodsWe conducted adult zebrafish PK and brain penetration studies on two known compounds (irinotecan and lorcaserin) with distinct PK and brain penetration properties using validated LCMS/MS method. Irinotecan was studied at a dose of 100mg/kg i.p. and levels of the parent drug and active metabolite SN-38 were measured. Loracserin was studies at a dose of 10mg/kg by two routes i.p. and p.o. ResultsZebrafish PK and brain penetration profiles for both compounds were very similar to that of higher mammals including humans. Irinotecan was metabolised to SN-38 in ratios similar to ratios seen in other species and the compound had long half life with very low brain penetration in our studies. Loracasin was highly permeable in brain as compared to the exposure in blood, with long half life and high relative bioavailability, similar to other mammalian species including humans. DiscussionAdult zebrafish PK studies are relatively an unexplored area of zebrafish research. The zebrafish data for key parameters of irinotecan and loracserin shows a high correlation to the data from higher species, including human. This report explores and discusses the use of adult zebrafish as a predictive PK tool for higher animal studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call