Abstract

Beta thalassemia major is an inherited disease resulting from reduction or total lack of beta globin chains. Patients with this disease need repeated blood transfusion for survival. This may cause oxidative stress and tissue injury due to iron overload, altered antioxidant enzymes, and other essential trace element levels. The aim of this review is to scrutinize the relationship between oxidative stress and serum trace elements, degree of damage caused by oxidative stress, and the role of antioxidant enzymes in beta thalassemia major patients. The findings indicate that oxidative stress in patients with beta thalassemia major is mainly caused by tissue injury due to over production of free radical by secondary iron overload, alteration in serum trace elements and antioxidant enzymes level. The role of trace elements like selenium, copper, iron, and zinc in beta thalassemia major patients reveals a significant change of these trace elements. Studies published on the status of antioxidant enzymes like catalase, superoxide dismutase, glutathione, and glutathione S-transferase in beta thalassemia patients also showed variable results. The administration of selective antioxidants along with essential trace elements and minerals to reduce the extent of oxidative damage and related complications in beta thalassemia major still need further evaluation.

Highlights

  • Beta thalassemia is one of the most common inherited single gene disorder caused by about 200 mutations in the beta globin genes

  • The findings indicate that oxidative stress in patients with beta thalassemia major is mainly caused by tissue injury due to over production of free radical by secondary iron overload, alteration in serum trace elements and antioxidant enzymes level

  • A study revealed increased levels of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase in red blood cells of beta thalassemia minor and near normal values of these enzymes in red blood cells of beta thalassemia major patients. They concluded that the red cells in beta thalassemia minor react to increased oxidant threat with augmented antioxidant enzyme activities while in beta thalassemia major patients normal antioxidant enzyme levels are due to presence of normal red cells because of to multiple blood transfusions [32]. This comprehensive review of literature indicates that oxidative stress in patients with beta thalassemia major is mainly caused by peroxidative injury due to secondary iron overload

Read more

Summary

Introduction

Beta thalassemia is one of the most common inherited single gene disorder caused by about 200 mutations in the beta globin genes. This secondary iron overload is responsible for peroxidative damage by increased production of reactive oxygen species within the erythrocytes leading to oxidative stress This oxidative stress will cause growth failure as well as liver, cardiovascular, endocrine, Anemia and neurological complications in beta thalassemia major. It has been evident from previous studies that iron overload is the main causative agent responsible for increased production of free radical and reactive oxygen species and subsequent oxidative stress which is compensated by various antioxidants present in the body These antioxidants are complex molecules that protect important biological sites from oxidative injury [4] in a retrospective study involving 123 thalassemia major children found that the most common complication among these beta thalassemic children was growth failure (57.8%) which may be due to neurosecretary disturbance and insensitivity of growth hormone. The is the liver problems (21.1%), heart diseases (13.8%), and endocrinopathies (4.2%)

Oxidative Stress
Oxidative Stress and Serum Trace Elements
Oxidative Stress and Antioxidant Enzymes
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.