Abstract

A two dimensional photonic crystal (2DPhC) with triangular symmetry is investigated using optical reflectivity measurements and numerical calculations. The system has been obtained by direct laser writing, using a pulsed laser (λ = 775 nm), perforating an In-doped Ge wafer. A lattice of holes with well-defined symmetry has been designed. Analyzing the spectral signature of PBGs recorded experimentaly with finite difference time domain theoretical calculations one was able to prove the relation between the geometric parameters (hole format, lattice constant) of the system and its ability to trap and guide the radiation in specific energy range. It was shown that at low frequency and telecommunication ranges of transvelsal electric modes photonic band gap occur. This structure may have potential aplications in designing photonic devices with applications in energy storage and conversion as potential alternative to Si-based technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.