Abstract

We explore the correlation of the neutrinoless double-β decay nuclear matrix element (NME) with electric quadrupole (E2) strength in the framework of the Hamiltonian-based generator-coordinate method, which is a configuration-mixing calculation of symmetry-restored intrinsic basis states. The restoration of symmetries that are simultaneously broken in the mean-field states allows us to compute the structural and decay properties associated with wave functions characterized by good quantum numbers. Our calculations show a clear anti-correlation between the neutrinoless double-β decay NME and the transition rate of the collective quadrupole excitation from the ground state in response to artificial changes of the quadrupole–quadrupole interaction. The anti-correlation is more remarkable in the decay from a weakly deformed parent nucleus to a more deformed grand-daughter nucleus. This interrelation may provide a way to reduce the uncertainty of the nuclear matrix element.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call