Abstract
In this study, the powder injection molding (PIM) process was applied to Fe-alloy powders. Microstructure, hardness, wear resistance, and corrosion resistance of the PIM specimens were analyzed and compared with those of a conventional stainless steel, SS316L. When Fe-alloy powders were injection molded and then sintered at 1200 °C or 1250 °C, completely densified specimens with almost no pores were obtained. They contained 63 to 80 vol pct of hard (Cr,Fe)2B dispersed in the austenite or martensite matrix. Since these (Cr,Fe)2B borides were very hard, thermally stable, and corrosion resistant, hardness, high-temperature hardness, wear resistance, and corrosion resistance of the PIM specimens of Fe-alloy powders were 2 to 5 times as high as those of the stainless steel. Such property improvement suggested new applicability of the PIM products of Fe-alloy powders to structures and parts requiring excellent mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.