Abstract
Odor is inevitably produced during sewage sludge composting, and the subsequent pollution hinders the further development of composting technologies. Third-generation high-throughput sequencing was used to analyze microbial community succession, and the correlations between odor and microbial communities were evaluated. Hydrogen sulfide (47.5–87.9 %) and ammonia (9.4–49.9 %) contributed majorly to odor emissions, accounting for 93.7–98.5 % of the emissions. Volatile sulfur compounds were mainly produced in the mesophilic and pre-thermophilic phases (43.0–83.4 %), whereas ammonia was mainly produced in the thermophilic phase (52.1–59.4 %). Microorganisms dominant in the mesophilic and thermophilic phases correlated positively with odor production in the following order: Rhodocyclaceae > Clostridiaceae_1 > Hyphomicrobiaceae > Acidimicrobiales > Family_XI, whereas those dominant in the cooling phase showed negative correlations with odor production in the following order: Bacillus > Sphingobacteriaceae > Pseudomonadaceae > DSSF69 > Chitinophagaceae. The back mixing of mature compost is expected to serve as an economical measure for controlling odor during sewage sludge composting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.