Abstract

ABSTRACTIntermolecular interaction energy between a pair of molecules of homologous series 4, 4′-disubstituted biphenyl of the general formula HO‒(CH2)n‒O‒C6H4‒C6H4‒CN(n = 3 − 11) (HnCBP) has been evaluated under various interacting conditions viz. stacking, in-plane and terminal interaction. Molecular geometry of the studied molecules was fully optimized without any constraint and checked for imaginary frequencies using hybrid density functional B3LYP combined with 6–31 g** basis set. Electronic structure of the molecules obtained through these calculations has been utilized to calculate electrostatic and polarization energies under Rayleigh-Schrodinger perturbation theory modified with multi-centered multi-pole expansion method. Dispersion and repulsion energies have been evaluated using Kitaigorodskii formula. The identified minimum energy complexes have been further utilized to evaluate interaction energy under super molecular approach by employing M06 and DFT-D methods. A comparative analysis of the results has been reported with a view to examine suitability of different methods to study molecular aggregations in moderately large organic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.