Abstract

Recent research has demonstrated that large amounts of hydrogen can be electrolytically incorporated in amorphous, compositionally modulated (CM) FeZr films. The first irreversible changes in the magnetic state of an electrolytically hydrogenated iron-rich amorphous alloy were observed. The hydrogen-induced changes in the magnetization were interpreted in terms of specific structural rearrangements. In this work, simultaneous measurements of the variations in the magnetization and mechanical properties of these films were measured as a function of hydrogen charging to further clarify the hydrogen-induced structure changes. The Young’s moduli E and internal friction d of as-deposited, and as-hydrogenated CM Fe80Zr20 thin films were calculated from the displacements of a vibrating composite cantilever, measured using a laser heterodyne interferometer (LHI) having a displacement sensitivity of ∼0.01 Å. E and d were measured using the resonant frequency method. CM films with thickness 1390 Å and modulation wavelength ∼10 Å were deposited on glass cantilevers (5 mm long, 2 mm wide, and 150 μm thick) by sequentially sputtering (rf diode) elemental Fe and Zr targets. The samples were electrolytically hydrogenated for various times in 2 N phosphoric acid with a current density of 26.3 mA/cm2. The maximum change in magnetization of the film (from 71.5 to 551 emu/cm3) was observed after 5 min. During this time, E increased 18-fold from 535 GPa to 9.63 TPa. The unusually high Young’s modulus of the as-deposited CM film is comparable to those previously observed in other CM films. The change is three times larger than the change in the E of carbon steel at the martensitic transformation, and nine times larger than the hydrogen induced increase in E of pure single crystals of iron. The d of the cantilever resonance decreased with hydrogenation, indicating that the incorporated H reduced the internal friction of the CM film. Preliminary analysis of the results indicates that the mechanical and magnetic changes can be interpreted in terms of similar atomic scale changes. Measurements on films with different CM wavelengths are in progress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call