Abstract

Low-frequency noise (LFN) is of significant implications in ion sensing. As a primary component of LFN for ion sensing in electrolytes, the solid/liquid interfacial noise remains poorly explored especially regarding its relation to the surface binding/debinding dynamic properties. Here, we employ impedance spectroscopy to systematically characterize this specific noise component for its correlation to the dynamic properties of surface protonation (i.e., hydrogen binding) and deprotonation (i.e., hydrogen debinding) processes. This correlation is facilitated by applying our recently developed interfacial impedance model to ultrathin TiO2 layers grown by means of atomic layer deposition (ALD) on a TiN metallic electrode. With an excellent fitting of the measured noise power density spectra by the model for the studied TiO2 layers, we are able to extract several characteristic dynamic parameters for the TiO2 sensing surface. The observed increase of noise with TiO2 ALD cycles can be well accounted for with an increased average binding site density. This study provides insights into how detailed surface properties may affect the noise performance of an ion sensor operating in electrolytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.