Abstract

Flight pressure and heat flux data have been compared to angle-of-attack- and yaw-dependent computational-fluid-dynamics results for pressure distribution as well as laminar and turbulent heat-transfer results at three time points in the ascent trajectory. Computed pressures, normalized by freestream pressure, were interpolated to the flight Mach numbers at each time point throughout the ascent and descent trajectories, and angle of attack and yaw were estimated from measured pressure by determining the combination minimizing the difference between the measured and computed pressures. The resulting vehicle attitude was compared to the vehicle attitude derived from inertial measurement unit results from the flight. The two methods showed excellent agreement for the entirety of the ascent and reentry portions of the trajectory. A similar normalization of the laminar and turbulent computational-fluid-dynamics heat transfer results into Stanton number distributions was compared to flight heat transfer measurements, and transition times at a given location were inferred. Computational heat conduction analysis verified assumptions in the calculation of heat flux from temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.