Abstract
Alumina-supported bimetallic overlayer Pd on Re (Re@Pd) catalysts were synthesized using the directed deposition technique. Hydrogen chemisorption, TEM, EDS, XRD, and ethylene hydrogenation studies were used to characterize the catalysts and provide indication of electronic modification of the Pd surface layer due to the overlayer particle structure. First principles computation and single crystal studies of Pd overlayers on Re in the literature have shown that electronic modification of the Pd overlayer is observed and leads to decreased binding strength for chemisorbed species such as H 2, C 2H 4, and CO. Measured hydrogen chemisorption isotherms indicated that Pd was deposited on the Re and not as pure isolated Pd particles. H 2 heats of adsorption, as determined by chemisorption, indicated that the Re@Pd overlayer catalysts were lower than either pure Pd or Re. The Re@Pd catalysts were slightly less active for ethylene hydrogenation than pure Pd but displayed similar apparent activation energies and H 2 and C 2H 4 reaction orders. A linear correlation between turnover frequency and maximum heat of H 2 adsorption was observed for the Pd and Re@Pd catalysts. This suggests an electronic modification of the Re@Pd catalyst surface compared to Pd as predicted in the literature by first principles computational studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.