Abstract
Learning analytics is valuable sources of understanding students' behavior and giving feedback to them so that we can improve their learning activities. Analyzing comment data written by students after each lesson helps to grasp their learning attitudes and situations. They can be a powerful source of data for all forms of assessment. In the current study, we break down student comments into different topics by employing two topic models: Probabilistic Latent Semantic Analysis (PLSA), and Latent Dirichlet Allocation (LDA), to discover the topics that help to predict final student grades as their performance. The objectives of this paper are twofold: First, determine how the three time-series items: P-, C- and N-comments and the difficulty of a subject affect the prediction results of final student grades. Second, evaluate the reliability of predicting student grades by considering the differences between prediction results of two consecutive lessons. The results obtained can help to understand student behavior during the period of the semester, grasp prediction error occurred in each lesson, and achieve further improvement of the student grade prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.