Abstract

This paper reports observations of the different types of etch pits and dislocations present in thick HgCdTe (211) layers grown by molecular beam epitaxy on CdTe/Si (211) composite substrates. Dislocation analysis for as-grown and thermal cycle-annealed samples has been carried out using bright-field transmission electron microscopy. Triangular pits present in as-grown material are associated with a mixture of Frank partials and perfect dislocations, while pits with fish-eye shapes have perfect dislocations with $$ \frac{1}{2}[0\bar{1}1] $$ Burgers vector. The dislocations beneath skew pits are more complex as they have two different crystallographic directions, and are associated with a mixture of Shockley partials and perfect dislocations. Dislocation analysis of samples after thermal cycle annealing (TCA) shows that the majority of dislocations under the etch pits are short segments of perfect dislocations with $$ \frac{1}{2}[0\bar{1}1] $$ Burgers vector while the remainder are Shockley partials. The absence of fish-eye shape pits in TCA samples suggests that they are associated with mobile dislocations that have reacted during annealing, causing the overall etch pit density to be reduced. Very large pits with a density ∼2×103 cm−2 are observed in as-grown and TCA samples. These defects thread from within the CdTe buffer layer into the upper regions of the HgCdTe layers. Their depth in as-grown material is so large that it is not possible to locate and identify the underlying defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.