Abstract

Three magnetic cloud events, in which solar impulsive electron events occurred in their outer region, are employed to investigate the difference of path lengths L 0eIII traveled by non-relativistic electrons from their release site near the Sun to the observer at 1 AU, where L 0eIII = v l × (t l – t III), v l and t l being the velocity and arrival time of electrons in the lowest energy channel (~27 keV) of the Wind/3DP/SST sensor, respectively, and t III being the onset time of type III radio bursts. The deduced L 0eIII value ranges from 1.3 to 3.3 AU. Since a negligible interplanetary scattering level can be seen in both L 0eIII > 3 AU and ~1.2 AU events, the difference in L 0eIII could be linked to the turbulence geometry (slab or two-dimensional) in the solar wind. By using the Wind/MFI magnetic field data with a time resolution of 92 ms, we examine the turbulence geometry in the dissipation range. In our examination, ~6 minutes of sampled subintervals are used in order to improve time resolution. We have found that, in the transverse turbulence, the observed slab fraction is increased with an increasing L 0eIII value, reaching ~100% in the L 0eIII > 3 AU event. Our observation implies that when only the slab spectral component exists, magnetic flux tubes (magnetic surfaces) are closed and regular for a very long distance along the transport route of particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call