Abstract

Magnetic recording disk carbon overcoats are lubricated with nanometer-thick films of perfluoropolyether lubricant. It is well-known that lubricant thickness redistribution takes place due to air shear stress oscillation at air bearing resonant frequencies and also due to shear stress oscillation induced by disk topography waves on test tracks. We extended this work to demonstrate correlation between surface topography and lubricant redistribution on whole disk surfaces. Lubricant moguls are shown to form over regions of the disk surface which have topography waves that are half the slider length, and the lubricant thickness peak is out-of-phase down track from the topography peak height. There is a critical relative humidity above 20% beyond which moguls are readily formed by the slider flying at 10 nm without thermal fly-height control. The significance of the lubricant redistribution for drive magnetic performance has long been the subject of debate. The slider flying height modulation measured by magnetic head media spacing was in good agreement with the dynamic air bearing simulation based on the measured disk surface topography. Measured head media spacing image data on the same disk surface before and after lubricant redistribution had the same length scale as the correlation between topography and lubricant thickness variation. These results demonstrate that lubricant thickness redistribution on the order of atomic diameters can degrade magnetic performance, and that the surface topography waves alone can degrade areal density by as much as 2%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.