Abstract

The quenching phenomenon, i.e., a sudden interrupt of the discharge current, was investigated in a pseudospark discharge with charging voltage of 2.5 kV, maximum current of 2 kA and discharge duration of 3 /spl mu/s. The working gas was hydrogen at a pressure of 40 Pa. Concerning electrode material and geometric parameters, molybdenun electrodes were chosen with hole diameters of 5 mm; the electrode distance was 3 mm. In this parameter range, a temporal correlation of current quenching and the occurrence of metal vapor could be detected by means of time-resolved optical spectroscopy. With each current interruption a sudden increase of emission from neutral molybdenum atoms as well as an increase of cathode spot emission, which is spatially localized on the cathode, occurs. Also oxygen ions were observed which show a similar time-dependence, however with a significant delay of the order of 200 ns. The results are discussed in the scope of the mechanism proposed for quenching, i.e., ion depletion in the plasma boundary layer, and the mechanisms occurring in the high current phase of a pseudospark discharge. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call