Abstract

Monoliths are considered to be a low pressure alternative to particle packed columns for liquid chromatography (LC). However, the chromatographic performance of organic monoliths, in particular, has still not reached the level of particle packed columns. Since chromatographic performance can be attributed to morphological features of the monoliths, in-situ characterization of the monolith structure in three dimensions would provide valuable information that could be used to help improve performance. In this work, serial sectioning and imaging were performed with a dual-beam scanning electron microscope for reconstruction and quantitative characterization of poly(ethylene glycol) diacrylate (PEGDA) monoliths inside a capillary column. Chord lengths, homogeneity factors, porosities and tortuosities were calculated from three-dimensional (3D) reconstructions of two PEGDA monoliths. Chromatographic efficiency was better for the monolith with smaller mean chord length (i.e., 5.23μm), porosity (i.e., 0.49) and tortuosity (i.e., 1.50) compared to values of 5.90μm, 0.59 and 2.34, respectively, for the other monolithic column. Computational prediction of tortuosity (2.32) was found to be in agreement with the experimentally measured value (2.34) for the same column. The monoliths were found to have significant radial heterogeneity since the homogeneity factor decreased from 5.39 to 4.89 (from center to edge) along the column radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.