Abstract

The potential of lignocellulosic natural fibres as renewable resources for thermal conversion and material reinforcement is largely dependent on the correlation between their chemical composition, crystalline structure and thermal decomposition properties. Significant differences were observed in the chemical composition of cotton, flax, hemp, kenaf and jute natural fibres in terms of cellulose, hemicellulose and lignin content, which influence their morphology, thermal properties and pyrolysis product distribution. A suitable methodology to study the kinetics of the thermal decomposition process of lignocellulosic fibres is proposed combining different models (Friedman, Flynn–Wall–Ozawa, Criado and Coats–Redfern). Cellulose pyrolysis can be modelled with similar kinetic parameters for all the natural fibres whereas the kinetic parameters for hemicellulose pyrolysis show intrinsic differences that can be assigned to the heterogeneous hemicellulose sugar composition in each natural fibre. This study provides the ground to critically select the most promising fibres to be used either for biofuel or material applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.