Abstract

Subendothelial retention of lipoproteins by proteoglycans (PGs) is the initiating event in atherosclerosis. The elongation of chondroitin sulfate (CS) chains is associated with increased low-density lipoprotein (LDL) binding and progression of atherosclerosis. Recently, it has been shown that 2 Golgi enzymes, chondroitin 4- O-sulfotransferase-1 (C4ST-1) and chondroitin N-acetylgalactosaminyltransferase-2 (ChGn-2), play a critical role in CS chain elongation. However, the roles of C4ST-1 and ChGn-2 during the progression of atherosclerosis are not known. The aim of this study was to analyze the expression of C4ST-1 and ChGn-2 in atherosclerotic lesions in vivo and determine whether their expression correlated with CS chain elongation. Low-density lipoprotein receptor knockout (LDLr KO) mice were fed a western diet for 2, 4, and 8 weeks to stimulate development of atherosclerosis. The binding of LDL and CS PG in this mouse model was confirmed by chondroitinase ABC (ChABC) digestion and apolipoprotein B (apo B) staining. Gel filtration analysis revealed that the CS chains began to elongate as early as 2 weeks after beginning a western diet and continued as the atherosclerosis progressed. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) showed that the mRNA levels of C4ST-1 and ChGn-2 increased after 8 weeks of this diet. In contrast, the mRNA levels of their homologs, C4ST-2 and ChGn-1, were unchanged. In addition, immunohistochemical analysis demonstrated that the expression of C4ST-1 and ChGn-2 appeared to have similar site-specific patterns and coincided with biglycan expression at the aortic root. Our results suggested that C4ST-1 and ChGn-2 may be involved in the elongation of CS chains in the arterial wall during the progression of atherosclerosis. Therefore, modulating their expression and activity might be a novel therapeutic strategy for atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.