Abstract

High-dose manganese exposure is associated with parkinsonism. Because manganese is paramagnetic, its relative distribution within the brain can be examined using magnetic resonance imaging (MRI). Herein, we present the first comprehensive study to use MRI, pallidal index (PI), and T(1) relaxation rate (R1) in concert with chemical analysis to establish a direct association between MRI changes and pallidal manganese concentration in rhesus monkeys following subchronic inhalation of manganese sulfate (MnSO(4)). Monkeys exposed to MnSO(4) at > or = 0.06 mg Mn/m(3) developed increased manganese concentrations in the globus pallidus, putamen, olfactory epithelium, olfactory bulb, and cerebellum. Manganese concentrations within the olfactory system of the MnSO(4)-exposed monkeys demonstrated a decreasing rostral-caudal concentration gradient, a finding consistent with olfactory transport of inhaled manganese. Marked MRI signal hyperintensities were seen within the olfactory bulb and the globus pallidus; however, comparable changes could not be discerned in the intervening tissue. The R1 and PI were correlated with the pallidal manganese concentration. However, increases in white matter manganese concentrations in MnSO(4)-exposed monkeys confounded the PI measurement and may lead to underestimation of pallidal manganese accumulation. Our results indicate that the R1 can be used to estimate regional brain manganese concentrations and may be a reliable biomarker of occupational manganese exposure. To our knowledge, this study is the first to provide evidence of direct olfactory transport of an inhaled metal in a nonhuman primate. Pallidal delivery of manganese, however, likely arises primarily from systemic delivery and not directly from olfactory transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call