Abstract

Maturation ameloblasts of rat incisor teeth have smooth-ended and ruffle-ended apical membrane configurations. It has also been reported that maturation ameloblasts have several lateral membrane configurations. The purpose of this study was to determine the correlation between the modulations of lateral and apical cell membranes of murine incisor ameloblasts in the maturation stage of amelogenesis. Maxillary and mandibular incisors were dissected, demineralized, embedded in paraffin, sectioned and then de-paraffinized, and the enamel organs were prepared for scanning electron microscopy. Additional mouse and rat incisor enamel organs were fixed and teased apart during dehydration, then observed in the SEM. The lengths of smooth- and ruffle-ended ameloblast segments were measured, and the site, length, and frequency of each lateral membrane configuration were determined within each segment. The lateral membrane configuration with folds forming from 12 to 14 channels around the periphery of the cells was most predominant in both smooth- and ruffle-ended cells. Cells surrounded by from six to eight channels were the only other lateral membrane configuration observed in ruffle-ended ameloblasts. Smooth-ended ameloblasts had lateral membrane configurations with either dense or sparse microvillous projections in addition to both types of channel cells. The observation that channelled extracellular spaces are always associated with ruffle-ended cells suggests that channels somehow function in conjunction with the ruffled apical membrane in resorption and removal of enamel matrix proteins. The smooth-ended ameloblasts lack tight apical junctions, and their microvillous lateral membranes permit the passage of plasma fluids around cells to the maturing enamel surface.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call