Abstract

Land use regression (LUR) models have been globally used to estimate long-term air pollution exposures. The present study aimed to analyze the association of different land use types and traffic measures with air pollutants in Tehran, Iran, as part of the future development of LUR models. Data of the particulate matter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) were extracted from 23 Tehran’s air quality monitors for 2010. The data of different land use types and traffic measures within the circular buffer radii 100 to 1000 meters and distances to them were calculated using Geographic Information System (GIS). Thereafter, the association of the mentioned air pollutants was evaluated with land use types and traffic measures. The annual average concentrations of PM10, SO2 and NO2 were 100.8 µg/m3, 38 parts per billion (ppb), and 53.2 ppb, respectively. The PM10 was associated with transportation area, other areas, and with distance to the other nearest land use (P < 0.05). The SO2 concentration was associated with official or commercial land use, and with other area land use (P < 0.05). Noteworthy, the NO2 concentration was associated with official or commercial land use, and with other areas (P < 0.05). The air pollutant concentrations was analyzed with different land use types and traffic measures as a preliminary work for development of LUR models in Tehran. It is hoped these analyses lead to successful development of LUR models in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.