Abstract

ABSTRACTUsing transfer matrices up to next-nearest-neighbour interactions, we examine the structural correlations of quasi-one-dimensional systems of hard disks confined by two parallel lines and hard spheres confined in cylinders. Simulations have shown that the non-monotonic and non-smooth growth of the correlation length in these systems accompanies structural crossovers [Fu et al., Soft Matter 13, 3296 (2017)]. Here, we identify the theoretical basis for these behaviours. In particular, we associate kinks in the growth of correlation lengths with eigenvalue crossing and splitting. Understanding the origin of such structural crossovers answers questions raised by earlier studies, and thus bridges the gap between theory and simulations for these reference models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.