Abstract

We present a systematic study of the correlation-induced corrections to the electronic band structure of zinc-blende BN. Our investigation employs an ab initio wave-function-based local Hamiltonian approach which offers a rigorous theoretical framework for the calculation of the polarization and local charge redistribution effects around an extra electron or hole placed into the conduction or valence bands of semiconducting and insulating materials. Moreover, electron correlations beyond relaxation and polarization can be readily incorporated. The electron correlation treatment is performed on finite clusters. In conducting our study, we make use of localized Wannier functions and embedding potentials derived explicitly from prior periodic Hartree-Fock calculations. The on-site and nearest-neighbor charge relaxations bring corrections of several eV to the Hartree-Fock band gap. Additional corrections are caused by long-range polarization effects. In contrast, the dispersion of the Hartree-Fock bands is marginally affected by electron correlations. Our final result for the fundamental gap of zinc-blende BN compares well with that derived from soft x-ray experiments at the B and N K-edges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call