Abstract
A theory is developed for the paired even-denominator fractional quantum Hall states in the lowest Landau level. We show that electrons bind to quantized vortices to form composite fermions, interacting through an exact instantaneous interaction that favors chiral p-wave pairing. There are two canonically dual pairing gap functions related by the bosonic Laughlin wave function (Jastrow factor) due to the correlation holes. We find that the ground state is the Moore-Read Pfaffian in the long-wavelength limit for weak Coulomb interactions, a new Pfaffian with an oscillatory pairing function for intermediate interactions, and a Read-Rezayi composite Fermi liquid beyond a critical interaction strength. Our findings are consistent with recent experimental observations of the 1/2 and 1/4 fractional quantum Hall effects in asymmetric wide quantum wells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.