Abstract

This paper addresses concentration fluctuations in comblike copolymer systems obtained by hydrogen bonding between polymers and end-functionalized oligomers. Monodisperse block copolymer systems in the homogeneous melt exhibit small-angle X-ray scattering peaks at finite nonzero angle due to characteristic correlation hole concentration fluctuations. In comblike copolymer systems obtained by hydrogen bonding, the dominant fluctuations have been found by us to vary experimentally between conventional long wavelength fluctuations (for weak hydrogen bonding) and finite wavelength fluctuations (strong hydrogen bonding). Monte Carlo computer simulations show that both regimes occur in one and the same system depending on the temperature. The transition between both regimes is directly related to the fraction of free oligomers, which depends on the temperature and the interactions. The structure factors are analyzed in terms of the random phase approximation applied to a mixture of free oligomers and comb copolymers, using a uniform distribution of teeth along the polymer chains and a binomial distribution in the number of polymers with a given number of teeth, confirmed numerically, as input. The agreement is excellent at both high and low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.