Abstract

We present a general method for the calculation of correlation functions in the repulsive one-dimensional Hubbard model at less than half-filling in a magnetic field h. We describe the dependence of the critical exponents that drive their long-distance asymptotics on the Coulomb coupling, the density, and h. This dependence can be described in terms of a set of coupled Bethe-Ansatz integral equations. It simplifies significantly in the strong-coupling limit, where we give explicit formulas for the dependence of the critical exponents on the magnetic field. In particular, we find that at small field the functional dependence of the critical exponents on h can be algebraic or logarithmic---depending on the operators involved. In addition, we evaluate the singularities of the Fourier images of the correlation functions. It turns out that switching on a magnetic field gives rise to singularities in the dynamic field-field correlation functions that are absent at h=0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.